东北男男gay猛男性同志,高中生GAY自慰网站COOK,91GV体育生在线观看,Gay2020钙片GV网址,免费完整GAY片在线播放,中文无码亚洲精品制服丝袜,日本中文字幕乱码免费,一本二卡三卡四卡乱码小说

當前位置: 首頁 > 溶液、染色液 > 特殊染色液 > Masson三色染色試劑盒

BP-DL021

Masson三色染色試劑盒

規(guī)格 7×50mL/7×100mL/7×500mL
  • 英文名:
  • Masson Staining Kit
  • CAS號:
  • 分子式:
  • 品牌:
  • Sbjbio
  • MDL:
  • 儲存條件:
  • 10~30℃,避光,12個月
產(chǎn)品編號 銷售價促銷價 庫存 數(shù)量 單位 加入購物車
BP-DL021-50mL ¥280.00元 準現(xiàn)貨 EA 加入購物車
BP-DL021-500mL ¥1400.00元 準現(xiàn)貨 EA 加入購物車
BP-DL021-100mL ¥470.00元 準現(xiàn)貨 EA 加入購物車

商品描述

文獻引用

質(zhì)檢證書(COA)

相關(guān)商品

【貨號】?BP-DL021

【規(guī)格】?7×50mL/7×100mL/7×500mL

【保存】?10~30℃,避光,12個月有效。

【產(chǎn)品組成】

?image.png

【產(chǎn)品簡介】

結(jié)締組織狹義上是指其含有的三種纖維:膠原纖維、網(wǎng)狀纖維、彈力纖維,而膠原纖維(collagen?fiber)是分布最廣、含量最多的一種纖維。Masson三色染色又稱馬松染色,是結(jié)締組織染色中最經(jīng)典的一種方法,是膠原纖維染色權(quán)威而經(jīng)典的技術(shù)方法。所謂三色染色通常是指染胞核和能選擇性的顯示膠原纖維和肌纖維。該法染色原理與陰離子染料分子的大小和組織的滲透有關(guān):分子的大小由分子量來體現(xiàn),小分子量易穿透結(jié)構(gòu)致密、滲透性低的組織;而大分子量則只能進入結(jié)構(gòu)疏松的、滲透性高的組織。然而,淡綠或苯胺藍的分子量都很大,因此Masson染色后肌纖維呈紅色,膠原纖維呈綠色(淡綠)或藍色(苯胺藍),主要用于區(qū)分膠原纖維和肌纖維。染色穩(wěn)定;分化時間短,1~2s;色彩清晰鮮艷;適用范圍廣,適宜于組織的石蠟切片、冰凍切片等染色;所染切片保存時間長且不易褪色。

【使用方法】?

1、切片常規(guī)脫蠟至水,用配制好的Weigert鐵蘇木素染色5~10min。

2、用酸性乙醇分化液分化,水洗。

3、用Masson藍化液返藍,水洗。

4、蒸餾水洗1min。

5、麗春紅品紅染色液染色5~10min(鏡下控制染色時間)。

6、蒸餾水稍洗。

7、磷鉬酸溶液洗5~10min。

8、直接入苯胺藍染色液中染色1~2min。

9、弱酸溶液洗1min。

10、95%乙醇快速脫水。無水乙醇脫水3次,每次5~10s。

11、二甲苯透明3次,每次1~2min。中性樹膠封固。

【染色結(jié)果】

?

image.png

【注意事項】

1、切片脫蠟應(yīng)盡量干凈。固定起著重要的作用,使用不同的固定液可延或縮短染色時間。

2、取A1、A2等量混合即為Weigert鐵蘇木素染液,一般24h失去染色力。

3、酸性乙醇分化時間應(yīng)根據(jù)切片厚薄、組織的類別和新舊而定。

4、弱酸溶液可使色彩更清晰鮮艷,如使用量大可自行配制0.1~0.3%乙酸溶液予以替代。

5、磷鉬酸分化時要在鏡下控制,分化到膠原纖維呈淡紅色、纖維呈紅色即可。分化時間根據(jù)染色深淺而定,一般1~2min。

6、Masson藍化液亦可自行配制Scott促藍液或0.1~1%碳酸鋰水溶液予以替代。

?


1.Ma X, Ma X, Ma Z, et al. The effects of uygur herb Hyssopus officinalis L. on the process of airway remodeling in asthmatic mice[J]. Evidence-Based Complementary and Alternative Medicine, 2014, 2014.

2.Wang W, Hu J, He C, et al. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small‐diameter blood vessel: Tunable elasticity and anticoagulation property[J]. Journal of Biomedical Materials Research Part A, 2015, 103(5): 1784-1797.

3.Wang W, Hu J, He C, et al. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small‐diameter blood vessel: Tunable elasticity and anticoagulation property[J]. Journal of Biomedical Materials Research Part A, 2015, 103(5): 1784-1797.

4.Wu C, Dong S, Li Y. Effects of miRNA-455 on cardiac hypertrophy induced by pressure overload[J]. International journal of molecular medicine, 2015, 35(4): 893-900.

5.Ren Z, Wang Y, Ma S, et al. Effective bone regeneration using thermosensitive poly (N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells[J]. ACS applied materials & interfaces, 2015, 7(34): 19006-19015.

6.Duan S, Yang X, Mei F, et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly (l‐lactide) nanofibrous scaffolds containing carbon nanomaterials[J]. Journal of Biomedical Materials Research Part A, 2015, 103(4): 1424-1435.

2.Ruan J, Wang X, Yu Z, et al. Enhanced Physiochemical and Mechanical Performance of Chitosan‐Grafted Graphene Oxide for Superior Osteoinductivity[J]. Advanced Functional Materials, 2016, 26(7): 1085-1097.

7.Jin J, Lv R, Guo J, et al. Improvement of left ventricular remodelling by inhibition of NF-κB in a rat model of myocardial infarction[J]. Heart, Lung and Circulation, 2016, 25(10): 1007-1012.

8.Jia Y, Wang W, Zhou X, et al. Synthesis and characterization of poly (glycerol sebacate)-based elastomeric copolyesters for tissue engineering applications[J]. Polymer Chemistry, 2016, 7(14): 2553-2564.

9.Xiao T, Luo J, Wu Z, et al. Effects of hydrogen sulfide on myocardial fibrosis and PI3K/AKT1-regulated autophagy in diabetic rats[J]. Molecular medicine reports, 2016, 13(2): 1765-1773.

10.Chi Y C, Shi C L, Zhou M, et al. Selective cyclooxygenase-2 inhibitor NS-398 attenuates myocardial fibrosis in mice after myocardial infarction via Snail signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2017, 21(24): 5805-5812.

11.Ren Z, Ma S, Jin L, et al. Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh[J]. Biofabrication, 2017, 9(2): 025036.

12.Liang B, Xiao T, Long J, et al. Hydrogen sulfide alleviates myocardial fibrosis in mice with alcoholic cardiomyopathy by downregulating autophagy[J]. International journal of molecular medicine, 2017, 40(6): 1781-1791.

13.Zhang Z, Li Z, Cao K, et al. Adjunctive therapy with statins reduces residual albuminuria/proteinuria and provides further renoprotection by downregulating the angiotensin II–AT1 pathway in hypertensive nephropathy[J]. Journal of hypertension, 2017, 35(7): 1442-1456.

14.Gong Z, Tang J, Xiang T, et al. Genome?wide identification of long noncoding RNAs in CCl4?induced liver fibrosis via RNA sequencing[J]. Molecular medicine reports, 2018, 18(1): 299-307.

15.Hou H T, Wang Y N, Shao S Z, et al. High calcium diet alleviates 5/6 nephrectomy-induced bone deteriorations of lumbar vertebrae in mice[J]. Experimental and therapeutic medicine, 2018, 15(4): 3483-3488.

16.Tang B, Zhang J G, Tan H Y, et al. Astragaloside IV inhibits ventricular remodeling and improves fatty acid utilization in rats with chronic heart failure[J]. Bioscience reports, 2018, 38(3).

17.Liu R, Zhang H B, Yang J, et al. Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR[J]. European review for medical and pharmacological sciences, 2018, 22(21): 7500-7508.

18.Gong Z, Lin J, Zheng J, et al. Dahuang Zhechong pill attenuates CCl4‐induced rat liver fibrosis via the PI3K‐Akt signaling pathway[J]. Journal of cellular biochemistry, 2019.

19.Zhang W X, Tai G J, Li X X, et al. Inhibition of neointima hyperplasia by the combined therapy of linagliptin and metformin via AMPK/Nox4 signaling in diabetic rats[J]. Free Radical Biology and Medicine, 2019, 143: 153-163.

20.Deng Y, Guo S, Wei B, et al. Activation of nicotinic acetylcholine α7 receptor attenuates progression of monocrotaline-induced pulmonary hypertension in Rats by downregulating the NLRP3 inflammasome[J]. Frontiers in Pharmacology, 2019, 10: 128.

21.Lin J, Deng C, Peng Y, et al. Dynamic Changes in MMP1 and TIMP1 in the Antifibrotic Process of Dahuang Zhechong Pill in Rats with Liver Fibrosis[J]. Open Chemistry, 2019, 17(1): 346-356.

22.Yuan Z, Wei P, Huang Y, et al. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration[J]. Acta biomaterialia, 2019, 85: 294-309.

23.Wei P, Jing W, Yuan Z, et al. Vancomycin-and Strontium-Loaded Microspheres with Multifunctional Activities against Bacteria, in Angiogenesis, and in Osteogenesis for Enhancing Infected Bone Regeneration[J]. ACS applied materials & interfaces, 2019, 11(34): 30596-30609.

24.Wei P, Yuan Z, Jing W, et al. Strengthening the potential of biomineralized microspheres in enhancing osteogenesis via incorporating alendronate[J]. Chemical Engineering Journal, 2019, 368: 577-588.

25.Zhou C, Li C, Wang Q, et al. Histopathological and proteomic analyses identify integrin-β1 as a potential mediator of phlebosclerosis in uremic patients[J]. Clinical and Experimental Nephrology, 2019: 1-9.

26.Shi A, Heinayati A, Bao D, et al. Small molecule inhibitor of TGF-β signaling enables robust osteogenesis of autologous GMSCs to successfully repair minipig severe maxillofacial bone defects[J]. Stem cell research & therapy, 2019, 10(1): 172.